首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
统计学   6篇
  2015年   1篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
2.
There is considerable interest in understanding how factors such as time and geographic distance between isolates might influence the evolutionary direction of foot‐and‐mouth disease. Genetic differences between viruses can be measured as the proportion of nucleotides that differ for a given sequence or gene. We present a Bayesian hierarchical regression model for the statistical analysis of continuous data with sample space restricted to the interval (0, 1). The data are modelled using beta distributions with means that depend on covariates through a link function. We discuss methodology for: (i) the incorporation of informative prior information into an analysis; (ii) fitting the model using Markov chain Monte Carlo sampling; (iii) model selection using Bayes factors; and (iv) semiparametric beta regression using penalized splines. The model was applied to two different datasets.  相似文献   
3.
Summary.  The evaluation of the performance of a continuous diagnostic measure is a commonly encountered task in medical research. We develop Bayesian non-parametric models that use Dirichlet process mixtures and mixtures of Polya trees for the analysis of continuous serologic data. The modelling approach differs from traditional approaches to the analysis of receiver operating characteristic curve data in that it incorporates a stochastic ordering constraint for the distributions of serologic values for the infected and non-infected populations. Biologically such a constraint is virtually always feasible because serologic values from infected individuals tend to be higher than those for non-infected individuals. The models proposed provide data-driven inferences for the infected and non-infected population distributions, and for the receiver operating characteristic curve and corresponding area under the curve. We illustrate and compare the predictive performance of the Dirichlet process mixture and mixture of Polya trees approaches by using serologic data for Johne's disease in dairy cattle.  相似文献   
4.
We developed a flexible non-parametric Bayesian model for regional disease-prevalence estimation based on cross-sectional data that are obtained from several subpopulations or clusters such as villages, cities, or herds. The subpopulation prevalences are modeled with a mixture distribution that allows for zero prevalence. The distribution of prevalences among diseased subpopulations is modeled as a mixture of finite Polya trees. Inferences can be obtained for (1) the proportion of diseased subpopulations in a region, (2) the distribution of regional prevalences, (3) the mean and median prevalence in the region, (4) the prevalence of any sampled subpopulation, and (5) predictive distributions of prevalences for regional subpopulations not included in the study, including the predictive probability of zero prevalence. We focus on prevalence estimation using data from a single diagnostic test, but we also briefly discuss the scenario where two conditionally dependent (or independent) diagnostic tests are used. Simulated data demonstrate the utility of our non-parametric model over parametric analysis. An example involving brucellosis in cattle is presented.  相似文献   
5.
Developing new medical tests and identifying single biomarkers or panels of biomarkers with superior accuracy over existing classifiers promotes lifelong health of individuals and populations. Before a medical test can be routinely used in clinical practice, its accuracy within diseased and non-diseased populations must be rigorously evaluated. We introduce a method for sample size determination for studies designed to test hypotheses about medical test or biomarker sensitivity and specificity. We show how a sample size can be determined to guard against making type I and/or type II errors by calculating Bayes factors from multiple data sets simulated under null and/or alternative models. The approach can be implemented across a variety of study designs, including investigations into one test or two conditionally independent or dependent tests. We focus on a general setting that involves non-identifiable models for data when true disease status is unavailable due to the nonexistence of or undesirable side effects from a perfectly accurate (i.e. ‘gold standard’) test; special cases of the general method apply to identifiable models with or without gold-standard data. Calculation of Bayes factors is performed by incorporating prior information for model parameters (e.g. sensitivity, specificity, and disease prevalence) and augmenting the observed test-outcome data with unobserved latent data on disease status to facilitate Gibbs sampling from posterior distributions. We illustrate our methods using a thorough simulation study and an application to toxoplasmosis.  相似文献   
6.
The joint modeling of longitudinal and survival data has received extraordinary attention in the statistics literature recently, with models and methods becoming increasingly more complex. Most of these approaches pair a proportional hazards survival with longitudinal trajectory modeling through parametric or nonparametric specifications. In this paper we closely examine one data set previously analyzed using a two parameter parametric model for Mediterranean fruit fly (medfly) egg-laying trajectories paired with accelerated failure time and proportional hazards survival models. We consider parametric and nonparametric versions of these two models, as well as a proportional odds rate model paired with a wide variety of longitudinal trajectory assumptions reflecting the types of analyses seen in the literature. In addition to developing novel nonparametric Bayesian methods for joint models, we emphasize the importance of model selection from among joint and non joint models. The default in the literature is to omit at the outset non joint models from consideration. For the medfly data, a predictive diagnostic criterion suggests that both the choice of survival model and longitudinal assumptions can grossly affect model adequacy and prediction. Specifically for these data, the simple joint model used in by Tseng et al. (Biometrika 92:587–603, 2005) and models with much more flexibility in their longitudinal components are predictively outperformed by simpler analyses. This case study underscores the need for data analysts to compare on the basis of predictive performance different joint models and to include non joint models in the pool of candidates under consideration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号