首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
统计学   7篇
  2013年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 125 毫秒
1
1.
Ordinal regression is used for modelling an ordinal response variable as a function of some explanatory variables. The classical technique for estimating the unknown parameters of this model is Maximum Likelihood (ML). The lack of robustness of this estimator is formally shown by deriving its breakdown point and its influence function. To robustify the procedure, a weighting step is added to the Maximum Likelihood estimator, yielding an estimator with bounded influence function. We also show that the loss in efficiency due to the weighting step remains limited. A diagnostic plot based on the Weighted Maximum Likelihood estimator allows to detect outliers of different types in a single plot.  相似文献   
2.
Logistic regression is frequently used for classifying observations into two groups. Unfortunately there are often outlying observations in a data set and these might affect the estimated model and the associated classification error rate. In this paper, the authors study the effect of observations in the training sample on the error rate by deriving influence functions. They obtain a general expression for the influence function of the error rate, and they compute it for the maximum likelihood estimator as well as for several robust logistic discrimination procedures. Besides being of interest in their own right, the influence functions are also used to derive asymptotic classification efficiencies of different logistic discrimination rules. The authors also show how influential points can be detected by means of a diagnostic plot based on the values of the influence function  相似文献   
3.
The k-means algorithm is one of the most common non hierarchical methods of clustering. It aims to construct clusters in order to minimize the within cluster sum of squared distances. However, as most estimators defined in terms of objective functions depending on global sums of squares, the k-means procedure is not robust with respect to atypical observations in the data. Alternative techniques have thus been introduced in the literature, e.g., the k-medoids method. The k-means and k-medoids methodologies are particular cases of the generalized k-means procedure. In this article, focus is on the error rate these clustering procedures achieve when one expects the data to be distributed according to a mixture distribution. Two different definitions of the error rate are under consideration, depending on the data at hand. It is shown that contamination may make one of these two error rates decrease even under optimal models. The consequence of this will be emphasized with the comparison of influence functions and breakdown points of these error rates.  相似文献   
4.
Robust statistics have slowly become familiar to all practitioners. Books entirely devoted to the subject (e.g. [R.A. Maronna, R.D. Martin, V.J. Yohai, Robust Statistics: Theory and Methods. John Wiley &; Sons, New York, NY, USA, 2006; P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outlier Detection, John Wiley &; Sons, New York, NY, USA, 1987], …) are without any doubt responsible for the increased practice of robust statistics in all fields of applications. Even classical books often have at least one chapter (or parts of chapters) which develops robust methodology. The improvement of computing power has also contributed to the development of a wider and wider range of available robust procedures. However, this success story is now menacing to get backwards: non-specialists interested in the application of robust methodology are faced with a large set of (assumed equivalent) methods and with over-sophistication of some of them. Which method should one use? How should the (numerous) parameters be optimally tuned? These questions are not so easy to answer for non-specialists! One could then argue that default procedures are available in most statistical software (Splus, R, SAS, Matlab, …). However, using as illustration the detection of outliers in multivariate data, it is shown that, on one hand, it is not obvious that one would feel confident with the output of default procedures, and that, on the other hand, trying to understand thoroughly the tuning parameters involved in the procedures might require some extensive research. This is not conceivable when trying to compete with the classical methodology which (while clearly unreliable) is so straightforward. The aim of the paper is to help the practitioners willing to detect in a reliable way outliers in a multivariate data set. The chosen methodology is the Minimum Covariance Determinant estimator being widely available and intuitively appealing.  相似文献   
5.
A range of procedures in both robustness and diagnostics require optimisation of a target functional over all subsamples of given size. Whereas such combinatorial problems are extremely difficult to solve exactly, something less than the global optimum can be ‘good enough’ for many practical purposes, as shown by example. Again, a relaxation strategy embeds these discrete, high-dimensional problems in continuous, low-dimensional ones. Overall, nonlinear optimisation methods can be exploited to provide a single, reasonably fast algorithm to handle a wide variety of problems of this kind, thereby providing a certain unity. Four running examples illustrate the approach. On the robustness side, algorithmic approximations to minimum covariance determinant (MCD) and least trimmed squares (LTS) estimation. And, on the diagnostic side, detection of multiple multivariate outliers and global diagnostic use of the likelihood displacement function. This last is developed here as a global complement to Cook’s (in J. R. Stat. Soc. 48:133–169, 1986) local analysis. Appropriate convergence of each branch of the algorithm is guaranteed for any target functional whose relaxed form is—in a natural generalisation of concavity, introduced here—‘gravitational’. Again, its descent strategy can downweight to zero contaminating cases in the starting position. A simulation study shows that, although not optimised for the LTS problem, our general algorithm holds its own with algorithms that are so optimised. An adapted algorithm relaxes the gravitational condition itself.  相似文献   
6.
Estimating multivariate location and scatter with both affine equivariance and positive breakdown has always been difficult. A well-known estimator which satisfies both properties is the Minimum Volume Ellipsoid Estimator (MVE). Computing the exact MVE is often not feasible, so one usually resorts to an approximate algorithm. In the regression setup, algorithms for positive-breakdown estimators like Least Median of Squares typically recompute the intercept at each step, to improve the result. This approach is called intercept adjustment. In this paper we show that a similar technique, called location adjustment, can be applied to the MVE. For this purpose we use the Minimum Volume Ball (MVB), in order to lower the MVE objective function. An exact algorithm for calculating the MVB is presented. As an alternative to MVB location adjustment we propose L 1 location adjustment, which does not necessarily lower the MVE objective function but yields more efficient estimates for the location part. Simulations compare the two types of location adjustment. We also obtain the maxbias curves of L 1 and the MVB in the multivariate setting, revealing the superiority of L 1.  相似文献   
7.
The k-means procedure is probably one of the most common nonhierachical clustering techniques. From a theoretical point of view, it is related to the search for the k principal points of the underlying distribution. In this paper, the classification resulting from that procedure for k=2 is shown to be optimal under a balanced mixture of two spherically symmetric and homoscedastic distributions. Then, the classification efficiency of the 2-means rule is assessed using the second order influence function and compared to the classification efficiencies of Fisher and Logistic discriminations. Influence functions are also considered here to compare the robustness to infinitesimal contamination of the 2-means method w.r.t. the generalized 2-means technique.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号