首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
管理学   1篇
社会学   4篇
统计学   13篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
  2003年   3篇
  2001年   1篇
  1974年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
Block clustering with collapsed latent block models   总被引:1,自引:0,他引:1  
We introduce a Bayesian extension of the latent block model for model-based block clustering of data matrices. Our approach considers a block model where block parameters may be integrated out. The result is a posterior defined over the number of clusters in rows and columns and cluster memberships. The number of row and column clusters need not be known in advance as these are sampled along with cluster memberhips using Markov chain Monte Carlo. This differs from existing work on latent block models, where the number of clusters is assumed known or is chosen using some information criteria. We analyze both simulated and real data to validate the technique.  相似文献   
3.
A spatial hidden Markov model (SHMM) is introduced to analyse the distribution of a species on an atlas, taking into account that false observations and false non-detections of the species can occur during the survey, blurring the true map of presence and absence of the species. The reconstruction of the true map is tackled as the restoration of a degraded pixel image, where the true map is an autologistic model, hidden behind the observed map, whose normalizing constant is efficiently computed by simulating an auxiliary map. The distribution of the species is explained under the Bayesian paradigm and Markov chain Monte Carlo (MCMC) algorithms are developed. We are interested in the spatial distribution of the bird species Greywing Francolin in the south of Africa. Many climatic and land-use explanatory variables are also available: they are included in the SHMM and a subset of them is selected by the mutation operators within the MCMC algorithm.  相似文献   
4.
Summary. Motivated by the autologistic model for the analysis of spatial binary data on the two-dimensional lattice, we develop efficient computational methods for calculating the normalizing constant for models for discrete data defined on the cylinder and lattice. Because the normalizing constant is generally unknown analytically, statisticians have developed various ad hoc methods to overcome this difficulty. Our aim is to provide computationally and statistically efficient methods for calculating the normalizing constant so that efficient likelihood-based statistical methods are then available for inference. We extend the so-called transition method to find a feasible computational method of obtaining the normalizing constant for the cylinder boundary condition. To extend the result to the free-boundary condition on the lattice we use an efficient path sampling Markov chain Monte Carlo scheme. The methods are generally applicable to association patterns other than spatial, such as clustered binary data, and to variables taking three or more values described by, for example, Potts models.  相似文献   
5.
The statistical evidence (or marginal likelihood) is a key quantity in Bayesian statistics, allowing one to assess the probability of the data given the model under investigation. This paper focuses on refining the power posterior approach to improve estimation of the evidence. The power posterior method involves transitioning from the prior to the posterior by powering the likelihood by an inverse temperature. In common with other tempering algorithms, the power posterior involves some degree of tuning. The main contributions of this article are twofold—we present a result from the numerical analysis literature which can reduce the bias in the estimate of the evidence by addressing the error arising from numerically integrating across the inverse temperatures. We also tackle the selection of the inverse temperature ladder, applying this approach additionally to the Stepping Stone sampler estimation of evidence. A key practical point is that both of these innovations incur virtually no extra cost.  相似文献   
6.
This paper proposes a new probabilistic classification algorithm using a Markov random field approach. The joint distribution of class labels is explicitly modelled using the distances between feature vectors. Intuitively, a class label should depend more on class labels which are closer in the feature space, than those which are further away. Our approach builds on previous work by Holmes and Adams (J. R. Stat. Soc. Ser. B 64:295–306, 2002; Biometrika 90:99–112, 2003) and Cucala et al. (J. Am. Stat. Assoc. 104:263–273, 2009). Our work shares many of the advantages of these approaches in providing a probabilistic basis for the statistical inference. In comparison to previous work, we present a more efficient computational algorithm to overcome the intractability of the Markov random field model. The results of our algorithm are encouraging in comparison to the k-nearest neighbour algorithm.  相似文献   
7.
Statistics and Computing - This paper introduces a framework for speeding up Bayesian inference conducted in presence of large datasets. We design a Markov chain whose transition kernel uses an...  相似文献   
8.
9.
Exponential random graph models are a class of widely used exponential family models for social networks. The topological structure of an observed network is modelled by the relative prevalence of a set of local sub-graph configurations termed network statistics. One of the key tasks in the application of these models is which network statistics to include in the model. This can be thought of as statistical model selection problem. This is a very challenging problem—the posterior distribution for each model is often termed “doubly intractable” since computation of the likelihood is rarely available, but also, the evidence of the posterior is, as usual, intractable. The contribution of this paper is the development of a fully Bayesian model selection method based on a reversible jump Markov chain Monte Carlo algorithm extension of Caimo and Friel (2011) which estimates the posterior probability for each competing model.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号