首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
管理学   2篇
  2005年   1篇
  1990年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
It has been shown that bathroom-type water uses dominate personal exposure to water-borne contaminants in the home. Therefore, in assessing exposure of specific population groups to the contaminants in the water, understanding population water-use behavior for bathroom activities as a function of demographic characteristics is vital to realistic exposure estimates. In this article, shower and bath frequencies and durations are analyzed, presented, and compared for various demographic groups derived from analyses of the National Human Activities Pattern Survey (NHAPS) database and the Residential End Uses of Water Study (REUWS) database as well as from a review of current literature. Analysis showed that age and level of education significantly influenced shower and bath frequency and duration. The frequency of showering and bathing reported in NHAPS agreed reasonably well with previous studies; however, durations of these events were found to be significantly longer. Showering frequency reported in REUWS was slightly less than that reported for NHAPS; however, durations of showers reported in REUWS are consistent with other studies. After considering the strengths and weaknesses of each data set and comparing their results to previous studies, it is concluded that NHAPS provides more reliable frequency data, while REUWS provides more reliable duration data. The shower- and bath-use behavior parameters recommended in this article can aid modelers in appropriately specifying water-use behavior as a function of demographic group in order to conduct reasonable assessments of exposure to contaminants that enter the home via the water supply.  相似文献   
2.
Recently, showers have been suspected to be an important source of indoor exposure to volatile organic compounds (VOC). The chloroform dose to an individual from showering was determined based on exhaled breath analysis. The postexposure chloroform breath concentration ranged from 6.0-21 micrograms/m3, while all corresponding background breath concentrations were less than 0.86 micrograms/m3. The internal dose from showering (inhalation plus dermal) was comparable to estimates of the dose from daily water ingestion. The risk associated with a single, 10-min shower was estimated to be 1.22 x 10(-4), while the estimated risk from daily ingestion of tap water ranged from 0.130 x 10(-4) to 1.80 x 10(-4) for 0.15 and 2.0 L, respectively. Since the estimates of chloroform risk from domestic water use for the three exposure routes--ingestion, inhalation, and dermal--are similar, all routes must be used to calculate the total risk when making policy decisions regarding the quality of the municipal water supply.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号