首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
统计学   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Models for geostatistical data introduce spatial dependence in the covariance matrix of location-specific random effects. This is usually defined to be a parametric function of the distances between locations. Bayesian formulations of such models overcome asymptotic inference and estimation problems involved in maximum likelihood-based approaches and can be fitted using Markov chain Monte Carlo (MCMC) simulation. The MCMC implementation, however, requires repeated inversions of the covariance matrix which makes the problem computationally intensive, especially for large number of locations. In the present work, we propose to convert the spatial covariance matrix to a sparse matrix and compare a number of numerical algorithms especially suited within the MCMC framework in order to accelerate large matrix inversion. The algorithms are assessed empirically on simulated datasets of different size and sparsity. We conclude that the band solver applied after ordering the distance matrix reduces the computational time in inverting covariance matrices substantially.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号