首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
管理学   1篇
人口学   1篇
统计学   57篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   22篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1983年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Despite the popularity and importance, there is limited work on modelling data which come from complex survey design using finite mixture models. In this work, we explored the use of finite mixture regression models when the samples were drawn using a complex survey design. In particular, we considered modelling data collected based on stratified sampling design. We developed a new design-based inference where we integrated sampling weights in the complete-data log-likelihood function. The expectation–maximisation algorithm was developed accordingly. A simulation study was conducted to compare the new methodology with the usual finite mixture of a regression model. The comparison was done using bias-variance components of mean square error. Additionally, a simulation study was conducted to assess the ability of the Bayesian information criterion to select the optimal number of components under the proposed modelling approach. The methodology was implemented on real data with good results.  相似文献   
2.
The smooth integration of counting and absolute deviation (SICA) penalty has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection and parameter estimation. However, solving the nonconvex optimization problem associated with SICA penalty in high-dimensional setting remains to be enriched, mainly due to the singularity at the origin and the nonconvexity of the SICA penalty function. In this paper, we develop a fast primal dual active set (PDAS) with continuation algorithm for solving the nonconvex SICA-penalized least squares in high dimensions. Upon introducing the dual variable, the PDAS algorithm iteratively identify and update the active set in the optimization using both the primal and dual information, and then solve a low-dimensional least square problem on the active set. When combined with a continuation strategy and a high-dimensional Bayesian information criterion (BIC) selector on the tuning parameters, the proposed algorithm is very efficient and accurate. Extensive simulation studies and analysis of a high-dimensional microarray gene expression data are presented to illustrate the performance of the proposed method.  相似文献   
3.
We propose that Bayesian variable selection for linear parametrizations with Gaussian iid likelihoods should be based on the spherical symmetry of the diagonalized parameter space. Our r-prior results in closed forms for the evidence for four examples, including the hyper-g prior and the Zellner–Siow prior, which are shown to be special cases. Scenarios of a single-variable dispersion parameter and of fixed dispersion are studied, and asymptotic forms comparable to the traditional information criteria are derived. A simulation exercise shows that model comparison based on our r-prior gives good results comparable to or better than current model comparison schemes.  相似文献   
4.
In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (KS) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.  相似文献   
5.
Several models are proposed in the literature for modeling fatigue data resulting from materials subject to cyclic stress and strain. Accelerated Weibull and accelerated Birnbaum–Saunders distributions are most commonly used models. Whereas the accelerated Weibull model is easier compared to accelerated Birnbaum–Saunders, it fails to represent the situation equally well. The present article focuses on Bayes analysis of the two models and provides a comparison based on some important Bayesian tools. Model compatibility study using predictive simulation ideas is preceded by the said comparison. Throughout, the posterior simulations are carried out by Markov chain Monte Carlo procedure.  相似文献   
6.
This paper considers a linear regression model with regression parameter vector β. The parameter of interest is θ= aTβ where a is specified. When, as a first step, a data‐based variable selection (e.g. minimum Akaike information criterion) is used to select a model, it is common statistical practice to then carry out inference about θ, using the same data, based on the (false) assumption that the selected model had been provided a priori. The paper considers a confidence interval for θ with nominal coverage 1 ‐ α constructed on this (false) assumption, and calls this the naive 1 ‐ α confidence interval. The minimum coverage probability of this confidence interval can be calculated for simple variable selection procedures involving only a single variable. However, the kinds of variable selection procedures used in practice are typically much more complicated. For the real‐life data presented in this paper, there are 20 variables each of which is to be either included or not, leading to 220 different models. The coverage probability at any given value of the parameters provides an upper bound on the minimum coverage probability of the naive confidence interval. This paper derives a new Monte Carlo simulation estimator of the coverage probability, which uses conditioning for variance reduction. For these real‐life data, the gain in efficiency of this Monte Carlo simulation due to conditioning ranged from 2 to 6. The paper also presents a simple one‐dimensional search strategy for parameter values at which the coverage probability is relatively small. For these real‐life data, this search leads to parameter values for which the coverage probability of the naive 0.95 confidence interval is 0.79 for variable selection using the Akaike information criterion and 0.70 for variable selection using Bayes information criterion, showing that these confidence intervals are completely inadequate.  相似文献   
7.
8.
This article considers the adaptive lasso procedure for the accelerated failure time model with multiple covariates based on weighted least squares method, which uses Kaplan-Meier weights to account for censoring. The adaptive lasso method can complete the variable selection and model estimation simultaneously. Under some mild conditions, the estimator is shown to have sparse and oracle properties. We use Bayesian Information Criterion (BIC) for tuning parameter selection, and a bootstrap variance approach for standard error. Simulation studies and two real data examples are carried out to investigate the performance of the proposed method.  相似文献   
9.
A number of models have been proposed in the literature to model data reflecting bathtub-shaped hazard rate functions. Mixture distributions provide the obvious choice for modelling such data sets but these contain too many parameters and hamper the accuracy of the inferential procedures particularly when the data are meagre. Recently, a few distributions have been proposed which are simply generalizations of the two-parameter Weibull model and are capable of producing bathtub behaviour of the hazard rate function. The Weibull extension and the modified Weibull models are two such families. This study focuses on comparing these two distributions for data sets exhibiting bathtub shape of the hazard rate. Bayesian tools are preferred due to their wide range of applicability in various nested and non-nested model comparison problems. Real data illustrations are provided so that a particular model can be recommended based on various tools of model comparison discussed in the paper.  相似文献   
10.
Ordered multiple categorical (MC) variable has been widely considered and studied as response variable, and few studies have carefully considered it as a predictor in linear regression. When doing this, the existence of some pseudo-categories may result in overfitting, and to detect those pseudo-categories by hypothesis test of all dummy variables might have low specificity. In this paper, we propose a transformation method of dummy variables for such ordered MC predictors, after which a model selection method combined with BIC will be elaborated. Theoretical consistency of our model selection method is established under some common assumptions. Both simulation studies and real data analysis of a medical survey indicate that our method provides good performance and is applicable to a wide range of biomedical research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号