首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2728篇
  免费   113篇
  国内免费   3篇
管理学   244篇
民族学   2篇
人口学   11篇
丛书文集   12篇
理论方法论   34篇
综合类   79篇
社会学   32篇
统计学   2430篇
  2023年   36篇
  2022年   27篇
  2021年   40篇
  2020年   43篇
  2019年   95篇
  2018年   114篇
  2017年   204篇
  2016年   94篇
  2015年   89篇
  2014年   113篇
  2013年   686篇
  2012年   213篇
  2011年   97篇
  2010年   82篇
  2009年   100篇
  2008年   88篇
  2007年   85篇
  2006年   71篇
  2005年   64篇
  2004年   65篇
  2003年   49篇
  2002年   38篇
  2001年   37篇
  2000年   40篇
  1999年   32篇
  1998年   34篇
  1997年   26篇
  1996年   10篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   13篇
  1991年   15篇
  1990年   5篇
  1989年   9篇
  1988年   12篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   12篇
  1983年   14篇
  1982年   14篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
排序方式: 共有2844条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

The cost and time of pharmaceutical drug development continue to grow at rates that many say are unsustainable. These trends have enormous impact on what treatments get to patients, when they get them and how they are used. The statistical framework for supporting decisions in regulated clinical development of new medicines has followed a traditional path of frequentist methodology. Trials using hypothesis tests of “no treatment effect” are done routinely, and the p-value < 0.05 is often the determinant of what constitutes a “successful” trial. Many drugs fail in clinical development, adding to the cost of new medicines, and some evidence points blame at the deficiencies of the frequentist paradigm. An unknown number effective medicines may have been abandoned because trials were declared “unsuccessful” due to a p-value exceeding 0.05. Recently, the Bayesian paradigm has shown utility in the clinical drug development process for its probability-based inference. We argue for a Bayesian approach that employs data from other trials as a “prior” for Phase 3 trials so that synthesized evidence across trials can be utilized to compute probability statements that are valuable for understanding the magnitude of treatment effect. Such a Bayesian paradigm provides a promising framework for improving statistical inference and regulatory decision making.  相似文献   
2.
Proportional hazards are a common assumption when designing confirmatory clinical trials in oncology. This assumption not only affects the analysis part but also the sample size calculation. The presence of delayed effects causes a change in the hazard ratio while the trial is ongoing since at the beginning we do not observe any difference between treatment arms, and after some unknown time point, the differences between treatment arms will start to appear. Hence, the proportional hazards assumption no longer holds, and both sample size calculation and analysis methods to be used should be reconsidered. The weighted log‐rank test allows a weighting for early, middle, and late differences through the Fleming and Harrington class of weights and is proven to be more efficient when the proportional hazards assumption does not hold. The Fleming and Harrington class of weights, along with the estimated delay, can be incorporated into the sample size calculation in order to maintain the desired power once the treatment arm differences start to appear. In this article, we explore the impact of delayed effects in group sequential and adaptive group sequential designs and make an empirical evaluation in terms of power and type‐I error rate of the of the weighted log‐rank test in a simulated scenario with fixed values of the Fleming and Harrington class of weights. We also give some practical recommendations regarding which methodology should be used in the presence of delayed effects depending on certain characteristics of the trial.  相似文献   
3.
The generalized half-normal (GHN) distribution and progressive type-II censoring are considered in this article for studying some statistical inferences of constant-stress accelerated life testing. The EM algorithm is considered to calculate the maximum likelihood estimates. Fisher information matrix is formed depending on the missing information law and it is utilized for structuring the asymptomatic confidence intervals. Further, interval estimation is discussed through bootstrap intervals. The Tierney and Kadane method, importance sampling procedure and Metropolis-Hastings algorithm are utilized to compute Bayesian estimates. Furthermore, predictive estimates for censored data and the related prediction intervals are obtained. We consider three optimality criteria to find out the optimal stress level. A real data set is used to illustrate the importance of GHN distribution as an alternative lifetime model for well-known distributions. Finally, a simulation study is provided with discussion.  相似文献   
4.
Keisuke Himoto 《Risk analysis》2020,40(6):1124-1138
Post-earthquake fires are high-consequence events with extensive damage potential. They are also low-frequency events, so their nature remains underinvestigated. One difficulty in modeling post-earthquake ignition probabilities is reducing the model uncertainty attributed to the scarce source data. The data scarcity problem has been resolved by pooling the data indiscriminately collected from multiple earthquakes. However, this approach neglects the inter-earthquake heterogeneity in the regional and seasonal characteristics, which is indispensable for risk assessment of future post-earthquake fires. Thus, the present study analyzes the post-earthquake ignition probabilities of five major earthquakes in Japan from 1995 to 2016 (1995 Kobe, 2003 Tokachi-oki, 2004 Niigata–Chuetsu, 2011 Tohoku, and 2016 Kumamoto earthquakes) by a hierarchical Bayesian approach. As the ignition causes of earthquakes share a certain commonality, common prior distributions were assigned to the parameters, and samples were drawn from the target posterior distribution of the parameters by a Markov chain Monte Carlo simulation. The results of the hierarchical model were comparatively analyzed with those of pooled and independent models. Although the pooled and hierarchical models were both robust in comparison with the independent model, the pooled model underestimated the ignition probabilities of earthquakes with few data samples. Among the tested models, the hierarchical model was least affected by the source-to-source variability in the data. The heterogeneity of post-earthquake ignitions with different regional and seasonal characteristics has long been desired in the modeling of post-earthquake ignition probabilities but has not been properly considered in the existing approaches. The presented hierarchical Bayesian approach provides a systematic and rational framework to effectively cope with this problem, which consequently enhances the statistical reliability and stability of estimating post-earthquake ignition probabilities.  相似文献   
5.
Summary.  Alongside the development of meta-analysis as a tool for summarizing research literature, there is renewed interest in broader forms of quantitative synthesis that are aimed at combining evidence from different study designs or evidence on multiple parameters. These have been proposed under various headings: the confidence profile method, cross-design synthesis, hierarchical models and generalized evidence synthesis. Models that are used in health technology assessment are also referred to as representing a synthesis of evidence in a mathematical structure. Here we review alternative approaches to statistical evidence synthesis, and their implications for epidemiology and medical decision-making. The methods include hierarchical models, models informed by evidence on different functions of several parameters and models incorporating both of these features. The need to check for consistency of evidence when using these powerful methods is emphasized. We develop a rationale for evidence synthesis that is based on Bayesian decision modelling and expected value of information theory, which stresses not only the need for a lack of bias in estimates of treatment effects but also a lack of bias in assessments of uncertainty. The increasing reliance of governmental bodies like the UK National Institute for Clinical Excellence on complex evidence synthesis in decision modelling is discussed.  相似文献   
6.
Comparison of Four New General Classes of Search Designs   总被引:1,自引:0,他引:1  
A factor screening experiment identifies a few important factors from a large list of factors that potentially influence the response. If a list consists of m factors each at three levels, a design is a subset of all possible 3 m runs. This paper considers the problem of finding designs with small numbers of runs, using the search linear model introduced in Srivastava (1975). The paper presents four new general classes of these 'search designs', each with 2 m −1 runs, which permit, at most, two important factors out of m factors to be searched for and identified. The paper compares the designs for 4 ≤ m ≤ 10, using arithmetic and geometric means of the determinants, traces and maximum characteristic roots of particular matrices. Two of the designs are found to be superior in all six criteria studied. The four designs are identical for m = 3 and this design is an optimal design in the class of all search designs under the six criteria. The four designs are also identical for m = 4 under some row and column permutations.  相似文献   
7.
Let ( Xk ) k be a sequence of i.i.d. random variables taking values in a set , and consider the problem of estimating the law of X1 in a Bayesian framework. We prove, under mild conditions on the prior, that the sequence of posterior distributions satisfies a moderate deviation principle.  相似文献   
8.
Summary. We model daily catches of fishing boats in the Grand Bank fishing grounds. We use data on catches per species for a number of vessels collected by the European Union in the context of the Northwest Atlantic Fisheries Organization. Many variables can be thought to influence the amount caught: a number of ship characteristics (such as the size of the ship, the fishing technique used and the mesh size of the nets) are obvious candidates, but one can also consider the season or the actual location of the catch. Our database leads to 28 possible regressors (arising from six continuous variables and four categorical variables, whose 22 levels are treated separately), resulting in a set of 177 million possible linear regression models for the log-catch. Zero observations are modelled separately through a probit model. Inference is based on Bayesian model averaging, using a Markov chain Monte Carlo approach. Particular attention is paid to the prediction of catches for single and aggregated ships.  相似文献   
9.
Estimated associations between an outcome variable and misclassified covariates tend to be biased when the methods of estimation that ignore the classification error are applied. Available methods to account for misclassification often require the use of a validation sample (i.e. a gold standard). In practice, however, such a gold standard may be unavailable or impractical. We propose a Bayesian approach to adjust for misclassification in a binary covariate in the random effect logistic model when a gold standard is not available. This Markov Chain Monte Carlo (MCMC) approach uses two imperfect measures of a dichotomous exposure under the assumptions of conditional independence and non-differential misclassification. A simulated numerical example and a real clinical example are given to illustrate the proposed approach. Our results suggest that the estimated log odds of inpatient care and the corresponding standard deviation are much larger in our proposed method compared with the models ignoring misclassification. Ignoring misclassification produces downwardly biased estimates and underestimate uncertainty.  相似文献   
10.
The problem considered is that of finding an optimum measurement schedule to estimate population parameters in a nonlinear model when the patient effects are random. The paper presents examples of the use of sensitivity functions, derived from the General Equivalence Theorem for D-optimality, in the construction of optimum population designs for such schedules. With independent observations, the theorem applies to the potential inclusion of a single observation. However, in population designs the observations are correlated and the theorem applies to the inclusion of an additional measurement schedule. In one example, three groups of patients of differing size are subject to distinct schedules. Numerical, as opposed to analytical, calculation of the sensitivity function is advocated. The required covariances of the observations are found by simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号