首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
管理学   2篇
统计学   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The Holt-Klee Condition states that there exist at least d vertex-disjoint strictly monotone paths from the source to the sink of a polytopal digraph consisting of the set of vertices and arcs of a polytope P directed by a linear objective function in general position. The study of paths on polytopal digraphs stems from a long standing problem, that of designing a polynomial-time pivot method, or proving none exists. To study disjoint paths it would be useful to have a tool to compute them. Without explicitly computing the digraph we develop an algorithm to compute a maximum cardinality set of source to sink paths in a polytope, even in the presence of degeneracy. The algorithm uses a combination of networks flows, the simplex method, and reverse search. An implementation is available.  相似文献   
2.
Constrained estimators that enforce variable selection and grouping of highly correlated data have been shown to be successful in finding sparse representations and obtaining good performance in prediction. We consider polytopes as a general class of compact and convex constraint regions. Well-established procedures like LASSO (Tibshirani, 1996) or OSCAR (Bondell and Reich, 2008) are shown to be based on specific subclasses of polytopes. The general framework of polytopes can be used to investigate the geometric structure that underlies these procedures. Moreover, we propose a specifically designed class of polytopes that enforces variable selection and grouping. Simulation studies and an application illustrate the usefulness of the proposed method.  相似文献   
3.
Given a list of vectors that contains directions of the edges of a given polytope ℘ and the availability of an algorithm that solves linear programs over ℘, we describe a method for enumerating the vertices of ℘; in particular, the method is adaptable to polytopes which are presented as (linear) projections of polytopes having linear inequality representation. Polynomial complexity bounds under both the real and the binary computation models are derived when the dimension of the polytope is fixed and the given LP algorithm is polynomial. Dedicated to Professor Frank K. Hwang on the occasion of his sixty fifth birthday. Supported in part by a grant from ISF—the Israel Science Foundation, by a VPR grant at the Technion and by the Fund for the Promotion of Research at the Technion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号