首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
管理学   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
For some critical applications, successfully accomplishing the mission or surviving the system through aborting the mission and performing a rescue procedure in the event of certain deterioration condition being satisfied are both pivotal. This has motivated considerable studies on mission abort policies (MAPs) to mitigate the risk of system loss in the past several years, especially for standby systems that use one or multiple standby sparing components to continue the mission when the online component fails, improving the mission success probability. The existing MAPs are mainly based on the number of failed online components ignoring the status of the standby components. This article makes contributions by modeling standby systems subject to MAPs that depend not only on the number of failed online components but also on the number of available standby components remaining. Further, dynamic MAPs considering another additional factor, the time elapsed from the mission beginning in the event of the mission abort decision making, are investigated. The solution methodology encompasses an event-transition based numerical algorithm for evaluating the mission success probability and system survival probability of standby systems subject to the considered MAPs. Examples are provided to demonstrate the benefit of considering the state of standby components and elapsed operation time in obtaining more flexible MAPs.  相似文献   
2.
Many real‐world systems use mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a risk of a system loss in the case of a mission continuation becomes too high. Usually, the rescue or recovery procedure is initiated upon the mission abort. Previous works have discussed a setting when only one attempt to complete a mission is allowed and this attempt can be aborted. However, missions with a possibility of multiple attempts can occur in different real‐world settings when accomplishing a mission is really important and the cost‐related and the time‐wise restrictions for this are not very severe. The probabilistic model for the multiattempt case is suggested and the tradeoff between the overall mission success probability (MSP) and a system loss probability is discussed. The corresponding optimization problems are formulated. For the considered illustrative example, a detailed sensitivity analysis is performed that shows specifically that even when the system's survival is not so important, mission aborting can be used to maximize the multiattempt MSP.  相似文献   
3.
《Risk analysis》2018,38(4):795-803
Many real‐world critical systems, e.g., aircrafts, manned space flight systems, and submarines, utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. For systems exposed to external impacts, the malfunctions are often caused by the consequences of these impacts. Traditional system reliability models typically cannot address a possibility of mission aborts. Therefore, in this article, we first develop the corresponding methodology for modeling and evaluation of the mission success probability and survivability of systems experiencing both internal failures and external shocks. We consider a policy when a mission is aborted and a rescue procedure is activated upon occurrence of the m th shock. We demonstrate the tradeoff between the system survivability and the mission success probability that should be balanced by the proper choice of the decision variable m . A detailed illustrative example of a mission performed by an unmanned aerial vehicle is presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号