首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2094篇
  免费   72篇
  国内免费   13篇
管理学   165篇
民族学   2篇
人口学   16篇
丛书文集   43篇
理论方法论   11篇
综合类   421篇
社会学   33篇
统计学   1488篇
  2024年   1篇
  2023年   12篇
  2022年   12篇
  2021年   22篇
  2020年   43篇
  2019年   61篇
  2018年   66篇
  2017年   126篇
  2016年   64篇
  2015年   60篇
  2014年   64篇
  2013年   575篇
  2012年   161篇
  2011年   65篇
  2010年   53篇
  2009年   68篇
  2008年   67篇
  2007年   66篇
  2006年   54篇
  2005年   73篇
  2004年   55篇
  2003年   36篇
  2002年   59篇
  2001年   53篇
  2000年   31篇
  1999年   28篇
  1998年   31篇
  1997年   27篇
  1996年   17篇
  1995年   9篇
  1994年   9篇
  1993年   16篇
  1992年   18篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
排序方式: 共有2179条查询结果,搜索用时 31 毫秒
1.
Damage models for natural hazards are used for decision making on reducing and transferring risk. The damage estimates from these models depend on many variables and their complex sometimes nonlinear relationships with the damage. In recent years, data‐driven modeling techniques have been used to capture those relationships. The available data to build such models are often limited. Therefore, in practice it is usually necessary to transfer models to a different context. In this article, we show that this implies the samples used to build the model are often not fully representative for the situation where they need to be applied on, which leads to a “sample selection bias.” In this article, we enhance data‐driven damage models by applying methods, not previously applied to damage modeling, to correct for this bias before the machine learning (ML) models are trained. We demonstrate this with case studies on flooding in Europe, and typhoon wind damage in the Philippines. Two sample selection bias correction methods from the ML literature are applied and one of these methods is also adjusted to our problem. These three methods are combined with stochastic generation of synthetic damage data. We demonstrate that for both case studies, the sample selection bias correction techniques reduce model errors, especially for the mean bias error this reduction can be larger than 30%. The novel combination with stochastic data generation seems to enhance these techniques. This shows that sample selection bias correction methods are beneficial for damage model transfer.  相似文献   
2.
When a candidate predictive marker is available, but evidence on its predictive ability is not sufficiently reliable, all‐comers trials with marker stratification are frequently conducted. We propose a framework for planning and evaluating prospective testing strategies in confirmatory, phase III marker‐stratified clinical trials based on a natural assumption on heterogeneity of treatment effects across marker‐defined subpopulations, where weak rather than strong control is permitted for multiple population tests. For phase III marker‐stratified trials, it is expected that treatment efficacy is established in a particular patient population, possibly in a marker‐defined subpopulation, and that the marker accuracy is assessed when the marker is used to restrict the indication or labelling of the treatment to a marker‐based subpopulation, ie, assessment of the clinical validity of the marker. In this paper, we develop statistical testing strategies based on criteria that are explicitly designated to the marker assessment, including those examining treatment effects in marker‐negative patients. As existing and developed statistical testing strategies can assert treatment efficacy for either the overall patient population or the marker‐positive subpopulation, we also develop criteria for evaluating the operating characteristics of the statistical testing strategies based on the probabilities of asserting treatment efficacy across marker subpopulations. Numerical evaluations to compare the statistical testing strategies based on the developed criteria are provided.  相似文献   
3.
In studies with recurrent event endpoints, misspecified assumptions of event rates or dispersion can lead to underpowered trials or overexposure of patients. Specification of overdispersion is often a particular problem as it is usually not reported in clinical trial publications. Changing event rates over the years have been described for some diseases, adding to the uncertainty in planning. To mitigate the risks of inadequate sample sizes, internal pilot study designs have been proposed with a preference for blinded sample size reestimation procedures, as they generally do not affect the type I error rate and maintain trial integrity. Blinded sample size reestimation procedures are available for trials with recurrent events as endpoints. However, the variance in the reestimated sample size can be considerable in particular with early sample size reviews. Motivated by a randomized controlled trial in paediatric multiple sclerosis, a rare neurological condition in children, we apply the concept of blinded continuous monitoring of information, which is known to reduce the variance in the resulting sample size. Assuming negative binomial distributions for the counts of recurrent relapses, we derive information criteria and propose blinded continuous monitoring procedures. The operating characteristics of these are assessed in Monte Carlo trial simulations demonstrating favourable properties with regard to type I error rate, power, and stopping time, ie, sample size.  相似文献   
4.
Abstract

This paper focuses on the inference of suitable generally non linear functions in stochastic volatility models. In this context, in order to estimate the variance of the proposed estimators, a moving block bootstrap (MBB) approach is suggested and discussed. Under mild assumptions, we show that the MBB procedure is weakly consistent. Moreover, a methodology to choose the optimal length block in the MBB is proposed. Some examples and simulations on the model are also made to show the performance of the proposed procedure.  相似文献   
5.
Bioequivalence (BE) studies are designed to show that two formulations of one drug are equivalent and they play an important role in drug development. When in a design stage, it is possible that there is a high degree of uncertainty on variability of the formulations and the actual performance of the test versus reference formulation. Therefore, an interim look may be desirable to stop the study if there is no chance of claiming BE at the end (futility), or claim BE if evidence is sufficient (efficacy), or adjust the sample size. Sequential design approaches specially for BE studies have been proposed previously in publications. We applied modification to the existing methods focusing on simplified multiplicity adjustment and futility stopping. We name our method modified sequential design for BE studies (MSDBE). Simulation results demonstrate comparable performance between MSDBE and the original published methods while MSDBE offers more transparency and better applicability. The R package MSDBE is available at https://sites.google.com/site/modsdbe/ . Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Let ( Xk ) k be a sequence of i.i.d. random variables taking values in a set , and consider the problem of estimating the law of X1 in a Bayesian framework. We prove, under mild conditions on the prior, that the sequence of posterior distributions satisfies a moderate deviation principle.  相似文献   
7.
While much used in practice, latent variable models raise challenging estimation problems due to the intractability of their likelihood. Monte Carlo maximum likelihood (MCML), as proposed by Geyer & Thompson (1992 ), is a simulation-based approach to maximum likelihood approximation applicable to general latent variable models. MCML can be described as an importance sampling method in which the likelihood ratio is approximated by Monte Carlo averages of importance ratios simulated from the complete data model corresponding to an arbitrary value of the unknown parameter. This paper studies the asymptotic (in the number of observations) performance of the MCML method in the case of latent variable models with independent observations. This is in contrast with previous works on the same topic which only considered conditional convergence to the maximum likelihood estimator, for a fixed set of observations. A first important result is that when is fixed, the MCML method can only be consistent if the number of simulations grows exponentially fast with the number of observations. If on the other hand, is obtained from a consistent sequence of estimates of the unknown parameter, then the requirements on the number of simulations are shown to be much weaker.  相似文献   
8.
Summary.  Generalized linear latent variable models (GLLVMs), as defined by Bartholomew and Knott, enable modelling of relationships between manifest and latent variables. They extend structural equation modelling techniques, which are powerful tools in the social sciences. However, because of the complexity of the log-likelihood function of a GLLVM, an approximation such as numerical integration must be used for inference. This can limit drastically the number of variables in the model and can lead to biased estimators. We propose a new estimator for the parameters of a GLLVM, based on a Laplace approximation to the likelihood function and which can be computed even for models with a large number of variables. The new estimator can be viewed as an M -estimator, leading to readily available asymptotic properties and correct inference. A simulation study shows its excellent finite sample properties, in particular when compared with a well-established approach such as LISREL. A real data example on the measurement of wealth for the computation of multidimensional inequality is analysed to highlight the importance of the methodology.  相似文献   
9.
主要讨论了一类混合指数型算子的一致逼近问题,并给出了逼近阶的估计和特征刻划。  相似文献   
10.
研究了以扩充Jacobi多项式(1+x)Vn(x)的零点为基点的Lagrange插值多项式Ln(f,x)逼近/k)的一些问题.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号