首页 | 本学科首页   官方微博 | 高级检索  
     


A Multinomial‐Dirichlet Model for Analysis of Competing Hypotheses
Authors:Kristin A. Duncan  Jonathan L. Wilson
Affiliation:Department of Mathematics and Statistics, San Diego State University, Campanile Drive, San Diego, CA, USA.
Abstract:Analysis of competing hypothesis, a method for evaluating explanations of observed evidence, is used in numerous fields, including counterterrorism, psychology, and intelligence analysis. We propose a Bayesian extension of the methodology, posing the problem in terms of a multinomial‐Dirichlet hierarchical model. The yet‐to‐be observed true hypothesis is regarded as a multinomial random variable and the evaluation of the evidence is treated as a structured elicitation of a prior distribution on the probabilities of the hypotheses. This model provides the user with measures of uncertainty for the probabilities of the hypotheses. We discuss inference, such as point and interval estimates of hypothesis probabilities, ratios of hypothesis probabilities, and Bayes factors. A simple example involving the stadium relocation of the San Diego Chargers is used to illustrate the method. We also present several extensions of the model that enable it to handle special types of evidence, including evidence that is irrelevant to one or more hypotheses, evidence against hypotheses, and evidence that is subject to deception.
Keywords:Analysis of competing hypotheses  Bayesian updating  data fusion  uncertainty
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号