首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的建设项目风险识别方法研究
引用本文:冯利军,李书全. 基于SVM的建设项目风险识别方法研究[J]. 管理工程学报, 2005, 19(Z1): 11-14
作者姓名:冯利军  李书全
作者单位:1. 天津财经大学企管系,天津,300222
2. 河北农业大学,河北,保定,071001
摘    要:支持向量机(SVM)是在统计学习理论的基础上发展起来的一种新的机器学习方法。它基于结构风险最小化原则,能有效地解决过学习问题,具有良好的推广性和分类精确性。在项目风险管理中,风险识别是很重要的一个步骤,如果风险不能被识别,那么我们就不能对风险进行转移、控制或管理。针对该问题,本文提出了一种新的风险识别方法-支持向量机,利用该方法对项目风险识别进行了研究,并取得了很好的识别效果。

关 键 词:支持向量机  项目管理  风险识别

Study On Risk Identification Method of Construction Project Based On SVM
FEN Lijun,LI Shuquan. Study On Risk Identification Method of Construction Project Based On SVM[J]. Journal of Industrial Engineering and Engineering Management, 2005, 19(Z1): 11-14
Authors:FEN Lijun  LI Shuquan
Affiliation:FEN Lijun1 LI Shuquan2
Abstract:Support Vector Machine(SVM) is a kind of new machine learning algorithm developed on the basis of statistical learning theory.This algorithm based on the principle of structural risk minimization can solve the problem of overfitting effectively and has good generality capability and better classification accuracy.In the risk management of the project,the risk identification is a very important step.If the risk can't be identified,then we can't shift,control or manage the risk.To this question,we has put forward a kind of new risk identification method,support vector machine.We have studied the project risk by using SVM and have made very good identification result.
Keywords:Support Vector Machine  Project Management  Risk Identification
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号