首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric likelihood inference for general autoregressive models
Authors:Francesco Bravo
Affiliation:1. Department of Economics and Related Studies, University of York, York, YO10 5DD, UK
Abstract:
This paper shows how nonparametric likelihood inference for autoregressive models can be based on the family of “empirical” Cressie–Read statistics. The results of the paper apply to possibly nonstationary autoregressive models with innovations that form a martingale difference sequence, and can accommodate multiple and complex unit roots, as well as deterministic components. As an application, the paper considers nonparametric likelihood-based tests for seasonal unit roots and for double unit roots. Monte Carlo evidence seems to suggest that the proposed tests have competitive finite sample properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号