Abstract: | ABSTRACT Area statistics are sample versions of areas occurring in a probability plot of two distribution functions F and G. This paper presents a unified basis for five statistics of this type. They can be used for various testing problems in the framework of the two sample problem for independent observations, such as testing equality of distributions against inequality or testing stochastic dominance of distributions in one or either direction against nondominance. Though three of the statistics considered have already been suggested in literature, two of them are new and deserve our interest. The finite sample distributions of the statistics (under F=G) can be calculated via recursion formulae. Two tables with critical values of the new statistics are included. The asymptotic distribution of the properly normalized versions of the area statistics are functionals of the Brownian bridge. The distribution functions and quantiles thereof are obtained by Monte Carlo simulation. Finally, the power functions of the two new tests based on area statistics are compared to the power functions of the tests based on the corresponding supremum statistics, i.e., statistics of the Kolmogorov–Smirnov type. |