首页 | 本学科首页   官方微博 | 高级检索  
     


ASYMPTOTIC DISTRIBUTION OF THE LARGEST EIGENVALUE
Abstract:ABSTRACT

This paper studies the asymptotic distribution of the largest eigenvalue of the sample covariance matrix. The multivariate distribution for the population is assumed to be elliptical with finite kurtosis 3κ. An expression as an expectation is obtained for the distribution function of the largest eigenvalue regardless of the multiplicity, m, of the population's largest eigenvalue. The asymptotic distribution function and density function are evaluated numerically for m = 2,3,4,5. The bootstrap of the average of the m largest eigenvalues is shown to be consistent for any underlying distribution with finite fourth-order cumulants.
Keywords:Asymptotic distributions  Elliptical distributions  Kurtosis  Largest eigenvalue  Multiplicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号