首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A second-order iterated smoothing algorithm
Authors:Dao Nguyen  Edward L Ionides
Institution:1.Department of Statistics,University of Michigan,Ann Arbor,USA
Abstract:Simulation-based inference for partially observed stochastic dynamic models is currently receiving much attention due to the fact that direct computation of the likelihood is not possible in many practical situations. Iterated filtering methodologies enable maximization of the likelihood function using simulation-based sequential Monte Carlo filters. Doucet et al. (2013) developed an approximation for the first and second derivatives of the log likelihood via simulation-based sequential Monte Carlo smoothing and proved that the approximation has some attractive theoretical properties. We investigated an iterated smoothing algorithm carrying out likelihood maximization using these derivative approximations. Further, we developed a new iterated smoothing algorithm, using a modification of these derivative estimates, for which we establish both theoretical results and effective practical performance. On benchmark computational challenges, this method beat the first-order iterated filtering algorithm. The method’s performance was comparable to a recently developed iterated filtering algorithm based on an iterated Bayes map. Our iterated smoothing algorithm and its theoretical justification provide new directions for future developments in simulation-based inference for latent variable models such as partially observed Markov process models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号