首页 | 本学科首页   官方微博 | 高级检索  
     


First‐order bias correction for fractionally integrated time series
Authors:Jaechoul Lee  Kyungduk Ko
Abstract:Most of the long memory estimators for stationary fractionally integrated time series models are known to experience non‐negligible bias in small and finite samples. Simple moment estimators are also vulnerable to such bias, but can easily be corrected. In this article, the authors propose bias reduction methods for a lag‐one sample autocorrelation‐based moment estimator. In order to reduce the bias of the moment estimator, the authors explicitly obtain the exact bias of lag‐one sample autocorrelation up to the order n−1. An example where the exact first‐order bias can be noticeably more accurate than its asymptotic counterpart, even for large samples, is presented. The authors show via a simulation study that the proposed methods are promising and effective in reducing the bias of the moment estimator with minimal variance inflation. The proposed methods are applied to the northern hemisphere data. The Canadian Journal of Statistics 37: 476–493; 2009 © 2009 Statistical Society of Canada
Keywords:ARFIMA  bias correction  long memory  sample autocorrelations  MSC 2000: Primary 62M10  secondary 65G20
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号