首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群优化的广义T-S模糊模型参数学习方法
引用本文:周欣然,滕召胜,易钊. 粒子群优化的广义T-S模糊模型参数学习方法[J]. 电子科技大学学报(社会科学版), 2008, 0(4)
作者姓名:周欣然  滕召胜  易钊
作者单位:湖南大学电气与信息工程学院;
基金项目:国家星火计划项目(2003EA770007); 湖南省杰出青年基金(01JZY2101)
摘    要:提出了一种基于粒子群优化的广义T-S模糊模型参数学习方法。该方法用离散二进制微粒位置表示模型的结构参数,用普通微粒位置表示模型规则中模糊集隶属函数的参数;这两种微粒位置联合体构成一个模型完整的前件参数集。每一学习循环分两步,前一步用粒子群进化迭代调整所有前件参数,后一步用正交最小二乘法估计后件参数。该方法不需任何先验知识,运算量小,能产生紧凑的模糊模型。非线性动态系统模糊建模的数字仿真说明了该方法的有效性。

关 键 词:模糊建模  广义T-S模糊模型  正交最小二乘法  粒子群优化  

Parameters Learning Approach for Generalized Takagi-Sugeno Fuzzy Model Using Particle Swarm Optimization
ZHOU Xin-ran,,TENG Zhao-sheng,, YI Zhao. Parameters Learning Approach for Generalized Takagi-Sugeno Fuzzy Model Using Particle Swarm Optimization[J]. Journal of University of Electronic Science and Technology of China(Social Sciences Edition), 2008, 0(4)
Authors:ZHOU Xin-ran    TENG Zhao-sheng     YI Zhao
Affiliation:ZHOU Xin-ran1,2,TENG Zhao-sheng1,, YI Zhao1 (1. College of Electrical , Information Engineering,Hunan University Changsha 410082,2. School of Information Science , Engineering,Central South University Changsha 410075)
Abstract:A parameters learning approach for generalized takagi-sugeno (T-S) fuzzy model is proposed in this paper on the base of analysis of generalized T-S Fuzzy model. The structural parameters of the approach are denoted by the position of discrete binary particles and the parameters of membership function in the approach are denoted by the position of ordinary particles. The combination of positions of the two kind of particles composes complete premise parameters set of a model. A learning cycle consists of two...
Keywords:fuzzy modeling  generalized takagi-sugeno (T-S) fuzzy model  orthogonal least Square error  particle swarm optimization (PSO)  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号