首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的在线产品销量预测分析研究
引用本文:荣飞琼,郭梦飞. 基于卷积神经网络的在线产品销量预测分析研究[J]. 西北民族大学学报, 2019, 0(2): 15-26
作者姓名:荣飞琼  郭梦飞
作者单位:1.兰州财经大学信息工程学院
基金项目:甘肃省软科学项目"甘肃省电子商务信用管理研究--构建基于大数据的甘肃网络供应商信用评估体系"(项目编号:17CX1ZA024)
摘    要:研究针对在线产品销售的决策需求,结合各行业在线产品的销量影响因素及深度学习算法优势,构建了适用于在线产品的销量预测模型,并重点评估了模型在不同种类在线产品上的适应性。研究过程将全连接模型与CNN的训练结果进行了对比,证明了CNN模型的精度和泛化能力。通过选取非深度学习模型Adaboosting作为对比基线,证明CNN模型在不同类别产品下的性能优势。另外,实验得出经过无监督预训练的CNN模型在销量预测问题上更有效、适应能力更强的结论。

关 键 词:深度学习  销量预测  CNN模型  全连接模型  无监督预训练

On Suitability of Online Product Sales Prediction Model Based on Convolutional Neural Networks
Rong Feiqiong,Guo Mengfei. On Suitability of Online Product Sales Prediction Model Based on Convolutional Neural Networks[J]. Journal of Northwest University for Nationalities, 2019, 0(2): 15-26
Authors:Rong Feiqiong  Guo Mengfei
Affiliation:(School of Information Engineering, Lanzhou University of Finanee and Economics, Lanzhou,Gansu 730020)
Abstract:Targeting at decision-making requirements of online product sales, by combining the influence factors of online product sales and the advantages of deep learning, we construct a sales prediction model for all online products, and mainly evaluate the suitability of the prediction model on different kinds of online products. By comparing the training results of CNN and full-connection network, we have proved the accuracy and generalization ability of this very model. By selecting non-deep learning model Adaboosting as the comparison baseline, we have certified the performance advantage of CNN on different kinds of online products, Moreover, the results show that the CNN, through unsupervised pre-training, is more effective on predicting the sales of online products and its suitability is greater than other models.
Keywords:deep learning  sales prediction  CNN  full-connection network  unsupervised pre-training
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号