首页 | 本学科首页   官方微博 | 高级检索  
     

基于GLM的贝叶斯变量与模型选择
引用本文:汪建均,马义中. 基于GLM的贝叶斯变量与模型选择[J]. 管理科学学报, 2012, 15(8): 24-33
作者姓名:汪建均  马义中
作者单位:南京理工大学经济管理学院,南京,210094
基金项目:国家自然科学基金重点资助项目
摘    要:针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性预测器中对每个变量设置了二元变量指示器,并建立起变量指示器与模型指示器之间的转换关系.然后,利用变量指示器与模型指示器的后验概率来识别显著性因子与选择最佳模型.最后,以实际的工业案例说明此方法能够有效地识别非正态响应部分因子试验的显著性因子.

关 键 词:贝叶斯变量选择  部分因子试验设计  广义线性模型  筛选试验  非正态响应

Bayesian variable and model selection based on generalized linear models
WANG Jian-jun , MA Yi-zhong. Bayesian variable and model selection based on generalized linear models[J]. Journal of Management Sciences in China, 2012, 15(8): 24-33
Authors:WANG Jian-jun    MA Yi-zhong
Affiliation:School of Economics and Management,Nanjing University of Science and Technology,Nanjing 210094,China
Abstract:As for fractional factorial experiments with non-normal responses,a Bayesian variable and model selection approach based on generalized linear models(GLM) was proposed in the paper when the number of factors in screening experiments is large.Firstly,an empirical Bayesian prior was selected to consider the uncertainty of parameters in GLM.Secondly,we set a binary variable indicator for each variable in the linear predicator of GLM,and established a transformational relation between the variable indicators and the model indicators.Thirdly,we could identify significant factors and select the best model by the posterior probabilities of the variable indicators and the model indicators.Finally,a practical industrial example reveals that the proposed method can effectively identify significant factors in the fractional factorial experiment with non-normal responses.
Keywords:Bayesian variable selection  fractional factorial experiment  generalized linear models  screening experiments  non-normal response
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号