首页 | 本学科首页   官方微博 | 高级检索  
     


Binary Dynamic Logit for Correlated Ordinal: estimation,application and simulation
Authors:Yingzi Li  Huinan Liu  Nairanjana Dasgupta
Affiliation:aColaberry Inc., Perryville, MO, USA;bDepartment of Math & Stat, Washington State University, Pullman, WA, USA
Abstract:We evaluate the estimation performance of the Binary Dynamic Logit model for correlated ordinal variables (BDLCO model), and compare it to GEE and Ordinal Logistic Regression performance in terms of bias and Mean Absolute Percentage Error (MAPE) via Monte Carlo simulation. Our results indicate that when the proportional-odds assumption does not hold, the proposed BDLCO method is superior to existing models in estimating correlated ordinal data. Moreover, this method is flexible in terms of modeling dependence and allows unequal slopes for each category, and can be used to estimate an apple bloom data set where the proportional-odds assumption is violated. We also provide a function in R to implement BDLCO.
Keywords:Ordinal categorical data   longitudinal data   generalized estimating equations   binary dynamic logit for correlated ordinal   repeated measures
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号