首页 | 本学科首页   官方微博 | 高级检索  
     


A bayesian estimator for the dependence function of a bivariate extreme‐value distribution
Authors:Simon Guillotte  François Perron
Affiliation:Département de mathématiques et de statistique Université de Montréal, Montréal (Québec) Canada H3C 3J7
Abstract:Any continuous bivariate distribution can be expressed in terms of its margins and a unique copula. In the case of extreme‐value distributions, the copula is characterized by a dependence function while each margin depends on three parameters. The authors propose a Bayesian approach for the simultaneous estimation of the dependence function and the parameters defining the margins. They describe a nonparametric model for the dependence function and a reversible jump Markov chain Monte Carlo algorithm for the computation of the Bayesian estimator. They show through simulations that their estimator has a smaller mean integrated squared error than classical nonparametric estimators, especially in small samples. They illustrate their approach on a hydrological data set.
Keywords:Bayesian estimator  bivariate extreme‐value distribution  convex Hermite interpolation  copula  dependence function  Markov chain Monte Carlo  Metropolis‐Hastings algorithm  Prediction  reversible jump
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号