首页 | 本学科首页   官方微博 | 高级检索  
     


The Travelling Salesman Problem on Permuted Monge Matrices
Authors:Rainer E. Burkard  Vladimir G. Deineko  Gerhard J. Woeginger
Affiliation:(1) Institut für Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz, Austria
Abstract:We consider traveling salesman problems (TSPs) with a permuted Monge matrix as cost matrix where the associated patching graph has a specially simple structure: a multistar, a multitree or a planar graph. In the case of multistars, we give a complete, concise and simplified presentation of Gaikov's theory. These results are then used for designing an O(m3 + mn) algorithm in the case of multitrees, where n is the number of cities and m is the number of subtours in an optimal assignment. Moreover we show that for planar patching graphs, the problem of finding an optimal subtour patching remains NP-complete.
Keywords:travelling salesman problem  subtour patching  combinatorial optimization  computational complexity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号