首页 | 本学科首页   官方微博 | 高级检索  
     


A class of nonparametric bivariate survival function estimators for randomly censored and truncated data
Authors:Hongsheng Dai  Marialuisa Restaino  Huan Wang
Affiliation:1. Department of Mathematical Sciences, University of Essex, Colchester, UK;2. Department of Economics and Statistics, University of Salerno, Fisciano (Salerno), Italy;3. Dundee Epidemiology and Biostatistics Unit, University of Dundee, Dundee, UK
Abstract:This paper proposes a class of nonparametric estimators for the bivariate survival function estimation under both random truncation and random censoring. In practice, the pair of random variables under consideration may have certain parametric relationship. The proposed class of nonparametric estimators uses such parametric information via a data transformation approach and thus provides more accurate estimates than existing methods without using such information. The large sample properties of the new class of estimators and a general guidance of how to find a good data transformation are given. The proposed method is also justified via a simulation study and an application on an economic data set.
Keywords:Bivariate survival function  random censoring  random truncation  correlated failure times  data transformation method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号