1. Department of Statistics , University of Central Florida , Orlando , FL , USA;2. School of Statistics , University of Minnesota , Minneapolis , MN , USA
Abstract:
The statistical analysis of change-point detection and estimation has received much attention recently. A time point such that observations follow a certain statistical distribution up to that point and a different distribution – commonly of the same functional form but different parameters after that point – is called a change-point. Multiple change-point problems arise when we have more than one change-point. This paper develops a method for multivariate normally distributed data to detect change-points and estimate within-segment parameters using maximum likelihood estimation.