首页 | 本学科首页   官方微博 | 高级检索  
     


Likelihood Inference for Discretely Observed Nonlinear Diffusions
Authors:Ola Elerian  Siddhartha Chib  Neil Shephard
Abstract:This paper is concerned with the Bayesian estimation of nonlinear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based on the Metropolis‐Hastings algorithm, in conjunction with the Euler‐Maruyama discretization scheme, are used to sample the posterior distribution of the latent data and the model parameters. Techniques for computing the likelihood function, the marginal likelihood, and diagnostic measures (all based on the MCMC output) are developed. Examples using simulated and real data are presented and discussed in detail.
Keywords:Bayes estimation  nonlinear diffusion  Euler‐Maruyama approximation  maximum likelihood  Markov chain Monte Carlo  Metropolis Hastings algorithm  missing data  simulation  stochastic differential equation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号