首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal quantization applied to sliced inverse regression
Authors:Romain Azaï  sAnne Gé  gout-Petit,Jé    me Saracco
Affiliation:INRIA Bordeaux Sud Ouest, CQFD team, Institut de Mathématiques de Bordeaux, UMR CNRS 5251, Université de Bordeaux, France
Abstract:In this paper we consider a semiparametric regression model involving a d-dimensional quantitative explanatory variable X and including a dimension reduction of X via an index βX. In this model, the main goal is to estimate the Euclidean parameter β and to predict the real response variable Y conditionally to X. Our approach is based on sliced inverse regression (SIR) method and optimal quantization in Lp-norm. We obtain the convergence of the proposed estimators of β and of the conditional distribution. Simulation studies show the good numerical behavior of the proposed estimators for finite sample size.
Keywords:Optimal quantization   Semiparametric regression model   Sliced inverse regression (SIR)   Reduction dimension
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号