Abstract: | This paper develops a space‐time statistical model for local forecasting of surface‐level wind fields in a coastal region with complex topography. The statistical model makes use of output from deterministic numerical weather prediction models which are able to produce forecasts of surface wind fields on a spatial grid. When predicting surface winds at observing stations , errors can arise due to sub‐grid scale processes not adequately captured by the numerical weather prediction model , and the statistical model attempts to correct for these influences. In particular , it uses information from observing stations within the study region as well as topographic information to account for local bias. Bayesian methods for inference are used in the model , with computations carried out using Markov chain Monte Carlo algorithms. Empirical performance of the model is described , illustrating that a structured Bayesian approach to complicated space‐time models of the type considered in this paper can be readily implemented and can lead to improvements in forecasting over traditional methods. |