首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lot sizing with storage losses under demand uncertainty
Authors:Stefano Coniglio  Arie M C A Koster  Nils Spiekermann
Institution:1.Department of Mathematical Sciences,University of Southampton,Southampton,United Kingdom;2.Lehrstuhl II für Mathematik,RWTH Aachen University,Aachen,Germany
Abstract:We address a variant of the single item lot sizing problem affected by proportional storage (or inventory) losses and uncertainty in the product demand. The problem has applications in, among others, the energy sector, where storage losses (or storage deteriorations) are often unavoidable and, due to the need for planning ahead, the demands can be largely uncertain. We first propose a two-stage robust optimization approach with second-stage storage variables, showing how the arising robust problem can be solved as an instance of the deterministic one. We then consider a two-stage approach where not only the storage but also the production variables are determined in the second stage. After showing that, in the general case, solutions to this problem can suffer from acausality (or anticipativity), we introduce a flexible affine rule approach which, albeit restricting the solution set, allows for causal production plans. A hybrid robust-stochastic approach where the objective function is optimized in expectation, as opposed to in the worst-case, while retaining robust optimization guarantees of feasibility in the worst-case, is also discussed. We conclude with an application to heat production, in the context of which we compare the different approaches via computational experiments on real-world data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号