首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Objective functions with redundant domains
Authors:Fatima Affif Chaouche  Carrie Rutherford  Robin Whitty
Institution:1. University of Sciences and Technology Houari Boumediene, Algiers, Algeria
2. London South Bank University, London, UK
Abstract:Let $(E,{ \mathcal{A}})$ be a set system consisting of a finite collection ${ \mathcal{A}}$ of subsets of a ground set E, and suppose that we have a function ? which maps ${ \mathcal{A}}$ into some set S. Now removing a subset K from E gives a restriction ${ \mathcal{A}}(\bar{K})$ to those sets of ${ \mathcal{A}}$ disjoint from K, and we have a corresponding restriction $\phi|_{\hspace {.02in}{ \mathcal{A}}(\bar{K})}$ of our function ?. If the removal of K does not affect the image set of ?, that is $\mbox {Im}(\phi|_{\hspace {.02in}{ \mathcal{A}}(\bar{X})})=\mbox {Im}(\phi)$ , then we will say that K is a kernel set of ${ \mathcal{A}}$ with respect to ?. Such sets are potentially useful in optimisation problems defined in terms of ?. We will call the set of all subsets of E that are kernel sets with respect to ? a kernel system and denote it by $\mathrm {Ker}_{\phi}({ \mathcal{A}})$ . Motivated by the optimisation theme, we ask which kernel systems are matroids. For instance, if ${ \mathcal{A}}$ is the collection of forests in a graph G with coloured edges and ? counts how many edges of each colour occurs in a forest then $\mathrm {Ker}_{\phi}({ \mathcal{A}})$ is isomorphic to the disjoint sum of the cocycle matroids of the differently coloured subgraphs; on the other hand, if ${ \mathcal{A}}$ is the power set of a set of positive integers, and ? is the function which takes the values 1 and 0 on subsets according to whether they are sum-free or not, then we show that $\mathrm {Ker}_{\phi}({ \mathcal{A}})$ is essentially never a matroid.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号