首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient and flexible model-based clustering of jumps in diffusion processes
Authors:Bokgyeong Kang  Taeyoung Park
Abstract:Jump–diffusion processes involving diffusion processes with discontinuous movements, called jumps, are widely used to model time-series data that commonly exhibit discontinuity in their sample paths. The existing jump–diffusion models have been recently extended to multivariate time-series data. The models are, however, still limited by a single parametric jump-size distribution that is common across different subjects. Such strong parametric assumptions for the shape and structure of a jump-size distribution may be too restrictive and unrealistic for multiple subjects with different characteristics. This paper thus proposes an efficient Bayesian nonparametric method to flexibly model a jump-size distribution while borrowing information across subjects in a clustering procedure using a nested Dirichlet process. For efficient posterior computation, a partially collapsed Gibbs sampler is devised to fit the proposed model. The proposed methodology is illustrated through a simulation study and an application to daily stock price data for companies in the S&P 100 index from June 2007 to June 2017.
Keywords:Corresponding author.  primary  62F15  secondary  97K80  Bayesian nonparametric inference  Jump–diffusion process  Nested Dirichlet process mixtures  Partially collapsed Gibbs sampler  Density estimation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号