首页 | 本学科首页   官方微博 | 高级检索  
     


Wavelet thresholding via a Bayesian approach
Authors:F. Abramovich,T. Sapatinas,&   B. W. Silverman
Affiliation:University of Tel Aviv, Ramat Aviv, Israel,;University of Kent, Canterbury, UK,;University of Bristol, UK
Abstract:We discuss a Bayesian formalism which gives rise to a type of wavelet threshold estimation in nonparametric regression. A prior distribution is imposed on the wavelet coefficients of the unknown response function, designed to capture the sparseness of wavelet expansion that is common to most applications. For the prior specified, the posterior median yields a thresholding procedure. Our prior model for the underlying function can be adjusted to give functions falling in any specific Besov space. We establish a relationship between the hyperparameters of the prior model and the parameters of those Besov spaces within which realizations from the prior will fall. Such a relationship gives insight into the meaning of the Besov space parameters. Moreover, the relationship established makes it possible in principle to incorporate prior knowledge about the function's regularity properties into the prior model for its wavelet coefficients. However, prior knowledge about a function's regularity properties might be difficult to elicit; with this in mind, we propose a standard choice of prior hyperparameters that works well in our examples. Several simulated examples are used to illustrate our method, and comparisons are made with other thresholding methods. We also present an application to a data set that was collected in an anaesthesiological study.
Keywords:Adaptive estimation    Anaesthetics    Bayes model    Besov spaces    Nonparametric regression    Thresholding    Wavelet transform
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号