Abstract: | ABSTRACTNowadays, generalized linear models have many applications. Some of these models which have more applications in the real world are the models with random effects; that is, some of the unknown parameters are considered random variables. In this article, this situation is considered in logistic regression models with a random intercept having exponential distribution. The aim is to obtain the Bayesian D-optimal design; thus, the method is to maximize the Bayesian D-optimal criterion. For the model was considered here, this criterion is a function of the quasi-information matrix that depends on the unknown parameters of the model. In the Bayesian D-optimal criterion, the expectation is acquired in respect of the prior distributions that are considered for the unknown parameters. Thus, it will only be a function of experimental settings (support points) and their weights. The prior distribution of the fixed parameters is considered uniform and normal. The Bayesian D-optimal design is finally calculated numerically by R3.1.1 software. |