Abstract: | Models for repeated measures or growth curves consist of a mean response plus error and the errors are usually correlated. Both maximum likelihood and residual maximum likelihood (REML) estimators of a regression model with dependent errors are derived for cases in which the variance matrix of the error model admits a convenient Cholesky factorisation. This factorisation may be linked to methods for producing recursive estimates of the regression parameters and recursive residuals to provide a convenient computational method. The method is used to develop a general approach to repeated measures analysis. |