Abstract: | We propose a flexible model approach for the distribution of random effects when both response variables and covariates have non-ignorable missing values in a longitudinal study. A Bayesian approach is developed with a choice of nonparametric prior for the distribution of random effects. We apply the proposed method to a real data example from a national long-term survey by Statistics Canada. We also design simulation studies to further check the performance of the proposed approach. The result of simulation studies indicates that the proposed approach outperforms the conventional approach with normality assumption when the heterogeneity in random effects distribution is salient. |