首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian local bandwidth selector in multivariate associated kernel estimator for joint probability mass functions
Abstract:ABSTRACT

This work treats non-parametric estimation of multivariate probability mass functions, using multivariate discrete associated kernels. We propose a Bayesian local approach to select the matrix of bandwidths considering the multivariate Dirac Discrete Uniform and the product of binomial kernels, and treating the bandwidths as a diagonal matrix of parameters with some prior distribution. The performances of this approach and the cross-validation method are compared using simulations and real count data sets. The obtained results show that the Bayes local method performs better than cross-validation in terms of integrated squared error.
Keywords:Beta distribution  binomial kernel  cross-validation  Dirac Discrete Uniform kernel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号