Abstract: | ABSTRACTThis work treats non-parametric estimation of multivariate probability mass functions, using multivariate discrete associated kernels. We propose a Bayesian local approach to select the matrix of bandwidths considering the multivariate Dirac Discrete Uniform and the product of binomial kernels, and treating the bandwidths as a diagonal matrix of parameters with some prior distribution. The performances of this approach and the cross-validation method are compared using simulations and real count data sets. The obtained results show that the Bayes local method performs better than cross-validation in terms of integrated squared error. |