Abstract: | ABSTRACTCensoring frequently occurs in survival analysis but naturally observed lifetimes are not of a large size. Thus, inferences based on the popular maximum likelihood (ML) estimation which often give biased estimates should be corrected in the sense of bias. Here, we investigate the biases of ML estimates under the progressive type-II censoring scheme (pIIcs). We use a method proposed in Efron and Johnstone [Fisher's information in terms of the hazard rate. Technical Report No. 264, January 1987, Stanford University, Stanford, California; 1987] to derive general expressions for bias corrected ML estimates under the pIIcs. This requires derivation of the Fisher information matrix under the pIIcs. As an application, exact expressions are given for bias corrected ML estimates of the Weibull distribution under the pIIcs. The performance of the bias corrected ML estimates and ML estimates are compared by simulations and a real data application. |