首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal designs based on exact confidence regions for parameter estimation of a nonlinear regression model
Authors:Jean-Pierre Vila  Jean-Pierre Gauchi
Affiliation:1. INRA (National Institute of Agricultural Research), Department of Applied Mathematics and Computational Science, UMR Analyse des Systèmes et Biométrie 2, Place P. Viala, 34060 Montpellier Cedex 1, France;2. INRA (National Institute of Agricultural Research), Department of Applied Mathematics and Computational Science, Unité MIA (UR341), Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
Abstract:This paper is concerned with the proposal of optimality criteria, referred to as X  - and XX-optimality criteria, and the construction of X  - and XX-optimal designs, for nonlinear regression models. These optimal designs aim at improving the estimation of parameters of this class of models. The principle of these criteria is the minimization, with respect to the design, of the expected volume of a particular exact parametric confidence region. In this paper we give detailed definitions, properties, and computation methods of X  - and XX-optimal designs. We also compare these designs with the classic local D-optimal designs, with regard to robustness and efficiency, for two very well-known academic models (Box–Lucas and Michaelis–Menten models).
Keywords:Confidence regions   Nonlinear regression   Optimal designs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号