首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On bagging and nonlinear estimation
Authors:Jerome H Friedman  Peter Hall
Institution:1. Statistics Department, Stanford University, Stanford, CA 94305, USA;2. CSIRO Mathematical Sciences and Centre for Mathematics and its Application, Australian National University, Canberra ACT 0200, Australia
Abstract:We propose an elementary model for the way in which stochastic perturbations of a statistical objective function, such as a negative log-likelihood, produce excessive nonlinear variation of the resulting estimator. Theory for the model is transparently simple, and is used to provide new insight into the main factors that affect performance of bagging. In particular, it is shown that if the perturbations are sufficiently symmetric then bagging will not significantly increase bias; and if the perturbations also offer opportunities for cancellation then bagging will reduce variance. For the first property it is sufficient that the third derivative of a perturbation vanish locally, and for the second, that second and fourth derivatives have opposite signs. Functions that satisfy these conditions resemble sinusoids. Therefore, our results imply that bagging will reduce the nonlinear variation, as measured by either variance or mean-squared error, produced in an estimator by sinusoid-like, stochastic perturbations of the objective function. Analysis of our simple model also suggests relationships between the results obtained using different with-replacement and without-replacement bagging schemes. We simulate regression trees in settings that are far more complex than those explicitly addressed by the model, and find that these relationships are generally borne out.
Keywords:Primary  62G09  secondary  62E20
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号