首页 | 本学科首页   官方微博 | 高级检索  
     


Improved model selection criteria for SETAR time series models
Authors:Pedro Galeano,Daniel Peñ  a
Affiliation:1. Departamento de Estadística e Investigación Operativa, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;2. Departamento de Estadística, Universidad Carlos III de Madrid, 28903 Getafe, Madrid, Spain
Abstract:The purpose of this paper is threefold. First, we obtain the asymptotic properties of the modified model selection criteria proposed by Hurvich et al. (1990. Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples. Biometrika 77, 709–719) for autoregressive models. Second, we provide some highlights on the better performance of this modified criteria. Third, we extend the modification introduced by these authors to model selection criteria commonly used in the class of self-exciting threshold autoregressive (SETAR) time series models. We show the improvements of the modified criteria in their finite sample performance. In particular, for small and medium sample size the frequency of selecting the true model improves for the consistent criteria and the root mean square error (RMSE) of prediction improves for the efficient criteria. These results are illustrated via simulation with SETAR models in which we assume that the threshold and the parameters are unknown.
Keywords:Asymptotic efficiency   Autoregressive models   Consistency   Model selection criteria   SETAR models
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号