Kernel density estimation on the torus |
| |
Authors: | Marco Di Marzio |
| |
Affiliation: | a DMQTE, Università di Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy b Departement of Statistics, University of Leeds, Leeds LS2 9JT, UK |
| |
Abstract: | Kernel density estimation for multivariate, circular data has been formulated only when the sample space is the sphere, but theory for the torus would also be useful. For data lying on a d-dimensional torus (d?1), we discuss kernel estimation of a density, its mixed partial derivatives, and their squared functionals. We introduce a specific class of product kernels whose order is suitably defined in such a way to obtain L2-risk formulas whose structure can be compared to their Euclidean counterparts. Our kernels are based on circular densities; however, we also discuss smaller bias estimation involving negative kernels which are functions of circular densities. Practical rules for selecting the smoothing degree, based on cross-validation, bootstrap and plug-in ideas are derived. Moreover, we provide specific results on the use of kernels based on the von Mises density. Finally, real-data examples and simulation studies illustrate the findings. |
| |
Keywords: | Circular symmetric unimodal families Conformation angles Density functionals Efficiency Minimax bounds Mixed derivatives Sin-order Toroidal kernels Twicing von Mises density |
本文献已被 ScienceDirect 等数据库收录! |
|