首页 | 本学科首页   官方微博 | 高级检索  
     


Conjugate analysis of multivariate normal data with incomplete observations
Authors:Francesca Dominici  Giovanni Parmigiani  Merlise Clyde
Abstract:The authors discuss prior distributions that are conjugate to the multivariate normal likelihood when some of the observations are incomplete. They present a general class of priors for incorporating information about unidentified parameters in the covariance matrix. They analyze the special case of monotone patterns of missing data, providing an explicit recursive form for the posterior distribution resulting from a conjugate prior distribution. They develop an importance sampling and a Gibbs sampling approach to sample from a general posterior distribution and compare the two methods.
Keywords:Conjugate analysis  data missing at random  Gibbs sampling  importance sampling  inverse Wishart distribution  multivariate normal distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号