首页 | 本学科首页   官方微博 | 高级检索  
     


Correlation in a Bayesian framework
Authors:Anirban Dasgupta  George Casella  Mohan Delampady  Christian Genest  William E. Strawderman  Herman Rubin
Abstract:The authors consider the correlation between two arbitrary functions of the data and a parameter when the parameter is regarded as a random variable with given prior distribution. They show how to compute such a correlation and use closed form expressions to assess the dependence between parameters and various classical or robust estimators thereof, as well as between p‐values and posterior probabilities of the null hypothesis in the one‐sided testing problem. Other applications involve the Dirichlet process and stationary Gaussian processes. Using this approach, the authors also derive a general nonparametric upper bound on Bayes risks.
Keywords:Bayes estimator  Bayes risk  correlation  Dirichlet process  maximum likelihood estimator  p‐value  robust estimation  squared error loss  unbiased estimator  uni‐modality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号