首页 | 本学科首页   官方微博 | 高级检索  
     


Covariate handling approaches in combination with dynamic borrowing for hybrid control studies
Authors:Chenqi Fu  Herbert Pang  Shouhao Zhou  Jiawen Zhu
Affiliation:1. Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA;2. PD Data Sciences, Genentech, South San Francisco, California, USA
Abstract:Borrowing data from external control has been an appealing strategy for evidence synthesis when conducting randomized controlled trials (RCTs). Often named hybrid control trials, they leverage existing control data from clinical trials or potentially real-world data (RWD), enable trial designs to allocate more patients to the novel intervention arm, and improve the efficiency or lower the cost of the primary RCT. Several methods have been established and developed to borrow external control data, among which the propensity score methods and Bayesian dynamic borrowing framework play essential roles. Noticing the unique strengths of propensity score methods and Bayesian hierarchical models, we utilize both methods in a complementary manner to analyze hybrid control studies. In this article, we review methods including covariate adjustments, propensity score matching and weighting in combination with dynamic borrowing and compare the performance of these methods through comprehensive simulations. Different degrees of covariate imbalance and confounding are examined. Our findings suggested that the conventional covariate adjustment in combination with the Bayesian commensurate prior model provides the highest power with good type I error control under the investigated settings. It has desired performance especially under scenarios of different degrees of confounding. To estimate efficacy signals in the exploratory setting, the covariate adjustment method in combination with the Bayesian commensurate prior is recommended.
Keywords:Bayesian dynamic borrowing  covariate adjustments  propensity score matching  propensity score weighting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号