首页 | 本学科首页   官方微博 | 高级检索  
     


A Monte Carlo simulation study on partially adaptive estimators of linear regression models
Authors:Yeliz Mert Kantar  Ilhan Usta  Şükrü Acıtaş
Affiliation:Department of Statistics , Anadolu University , Eskisehir , 26470 , Turkey
Abstract:This paper presents a comprehensive comparison of well-known partially adaptive estimators (PAEs) in terms of efficiency in estimating regression parameters. The aim is to identify the best estimators of regression parameters when error terms follow from normal, Laplace, Student's t, normal mixture, lognormal and gamma distribution via the Monte Carlo simulation. In the results of the simulation, efficient PAEs are determined in the case of symmetric leptokurtic and skewed leptokurtic regression error data. Additionally, these estimators are also compared in terms of regression applications. Regarding these applications, using certain standard error estimators, it is shown that PAEs can reduce the standard error of the slope parameter estimate relative to ordinary least squares.
Keywords:linear regression model  non-normal error terms  partially adaptive estimator  sandwich estimator  Monte Carlo simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号