Abstract: | The rapid increase in the number of AIDS cases during the 1980s and the spread of the disease from the high-risk groups into the general population has created widespread concern. In particular, assessing the accuracy of the screening tests used to detect antibodies to the HIV (AIDS) virus in donated blood and determining the prevalance of the disease in the population are fundamental statistical problems. Because the prevalence of AIDS varies widely by geographic region and data on the number of infected blood donors are published regularly, Bayesian methods, which utilize prior results and update them as new data become available, are quite useful. In this paper we develop a Bayesian procedure for estimating the prevalence of a rare disease, the sensitivity and specificity of the screening tests, and the predictive value of a positive or negative screening test. We apply the procedure to data on blood donors in the United States and in Canada. Our results augment those described in Gastwirth (1987) using classical methods. Indeed, we show that the inclusion of sound prior knowledge into the statistical analysis does not yield sufficiently precise estimates of the predictive value of a positive test. Hence confirmatory testing is needed to obtain reliable estimates. The emphasis of the Bayesian predictive paradigm on prediction intervals for future data yields a valuable insight. We demonstrate that using them might have detected a decline in the specificity of the most frequently used screening test earlier than it apparently was. |