首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Some Geometric Methods for Constructing Decision Criteria Based On Two-Dimensional Parameters
Authors:Thall Peter F
Institution:Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA, email: rex@mdanderson.org.
Abstract:This paper reviews two types of geometric methods proposed in recent years for defining statistical decision rules based on 2-dimensional parameters that characterize treatment effect in a medical setting. A common example is that of making decisions, such as comparing treatments or selecting a best dose, based on both the probability of efficacy and the probability toxicity. In most applications, the 2-dimensional parameter is defined in terms of a model parameter of higher dimension including effects of treatment and possibly covariates. Each method uses a geometric construct in the 2-dimensional parameter space based on a set of elicited parameter pairs as a basis for defining decision rules. The first construct is a family of contours that partitions the parameter space, with the contours constructed so that all parameter pairs on a given contour are equally desirable. The partition is used to define statistical decision rules that discriminate between parameter pairs in term of their desirabilities. The second construct is a convex 2-dimensional set of desirable parameter pairs, with decisions based on posterior probabilities of this set for given combinations of treatments and covariates under a Bayesian formulation. A general framework for all of these methods is provided, and each method is illustrated by one or more applications.
Keywords:Bayesian statistics  Clinical trials  Dose-finding  Indifference set  Medical decision making  Phase II clinical trial  Trade-offs
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号