首页 | 本学科首页   官方微博 | 高级检索  
     


Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area
Authors:Heather R. McCarthy  Diane E. Pataki
Affiliation:(1) Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA;(2) Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
Abstract:Trees in urban ecosystems are valued for shade and cooling effects, reduction of CO2 emissions and pollution, and aesthetics. However, in arid and semi-arid regions, urban trees must be maintained through supplemental irrigation, in competition with other water needs. Currently, a comprehensive understanding of the factors which influence water use of urban tree species is lacking. In order to study the drivers of whole tree water use of two common species in the Los Angeles Basin urban forest, four sites in Los Angeles and Orange County were instrumented with sap flow and meteorological sensors. These sites allowed comparisons of the water use of a native riparian (Platanus racemosa Nutt.; California sycamore) and non-native (Pinus canariensis C. Sm.; Canary Island pine) Mediterranean species, as well as the spatial variability in water use under different environmental and management conditions. We found higher rates of sapflux (J O ) in native California sycamore as compared to non-native Canary Island pine. Within each species, we found considerable site-to-site variability in the magnitude and seasonality of J O . For Canary Island pine, the majority of inter-site variability derived from differences in water availability: response to vapor pressure deficit was similar during a period without water limitations. In contrast, California sycamore did not appear to experience water limitation at any site; however, there was considerable spatial variability in water use, potentially linked to differences in nutrient availability. Whole tree transpiration (E) was similar for the two species when water was not limiting, but Canary Island pine was able to withstand unirrigated conditions with a very low E. These results add to the currently small pool of data on urban tree water use and ecophysiology, and contribute to establishing a more quantitative understanding of urban tree function.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号