首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An exact semidefinite programming approach for the max-mean dispersion problem
Authors:Michele Garraffa  Federico Della Croce  Fabio Salassa
Institution:1.DAUIN, Politecnico di Torino,Torino,Italy
Abstract:This paper proposes an exact algorithm for the Max-Mean dispersion problem (\(Max-Mean DP\)), an NP-Hard combinatorial optimization problem whose aim is to select the subset of a set such that the average distance between elements is maximized. The problem admits a natural non-convex quadratic fractional formulation from which a semidefinite programming (SDP) relaxation can be derived. This relaxation can be tightened by means of a cutting plane algorithm which iteratively adds the most violated triangular inequalities. The proposed approach embeds the SDP relaxation and the cutting plane algorithm into a branch and bound framework to solve \(Max-Mean DP\) instances to optimality. Computational experiments show that the proposed method is able to solve to optimality in reasonable time instances with up to 100 elements, outperforming other alternative approaches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号