首页 | 本学科首页   官方微博 | 高级检索  
     


Error autocorrelation revisited: the AR(1) case
Authors:Aris Spanos
Affiliation: a Dept. of Economics, Birkbeck College, (London University), London
Abstract:The aim of the paper is to consider the implicit restrictions imposed when adopting an AR(1) error term in the context of the linear regression model. It is shown that these restrictions amount to assuming a largely identical temporal structure for all the variables involved in the specification. Implicit in this is the assumption that these variables are mutually Granger non-causal. The main implication of this result is that in most cases when residual autocorrelation is detected boththe OLS and GLS estimators are biased and inconsistent.
Keywords:error-autocorrelation  AR(1)  common factor restrictions  Granger causality  misspecfication  residual versus error-autocorrelation
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号